• Home
  • Services
  • About
  • Contact
  • Blog
  • 知財活動のROICへの貢献
  • 生成AIを活用した知財戦略の策定方法
  • 生成AIとの「壁打ち」で、新たな発明を創出する方法

​
​よろず知財コンサルティングのブログ

除くクレームはそんなに自由でいいのか?

18/1/2026

0 Comments

 
2026年1月15日に配信された「知財実務オンライン」第269回(約1時間54分)は補正実務・除くクレーム・傘理論という、近年の実務で再び注目を集めるテーマを真正面から扱った回でした。
ゲストは、元特許庁審査官・審判官というバックグラウンドを持つ柴田 和雄 弁理士(弁理士法人英知国際特許商標事務所 技術部長)で、日本・欧州・米国の補正実務を横断的(水平)かつ歴史的(垂直)に俯瞰しながら、「除くクレームは本当にそんなに自由でいいのか?」という問いを投げかけました。
本来は例外的であるはずの除くクレームが“常套手段”化している日本の現状は、欧州(EPO)・米国(USPTO)と異なる方向に進んでいるようです。今回の講義は、この現状を条文・判例・国際比較・歴史的経緯から整理した、極めて示唆に富む内容でした。
アーカイブ動画だと何度も聞き返すことができ、今回は講義資料もダウンロードできましたので、非常に良い勉強になりました。
 
(第269回)知財実務オンライン:「 傘理論も復活した!しかし、除くクレームはそんなに自由でいいのか?~補正実務の水平的垂直的俯瞰~」(ゲスト:弁理士法人英知国際特許商標事務所 技術部長 柴田 和雄) - YouTube
https://www.youtube.com/watch?v=nsDZxujMcak
 
 
Are Disclaimers Really Allowed Such Broad Freedom?
The 269th session of IP Practice Online, streamed on January 15, 2026 (approximately 1 hour and 54 minutes), squarely addressed topics that have once again come under close scrutiny in recent patent practice: amendment practice, disclaimers, and the umbrella theory.
The guest speaker was Kazuo Shibata, a patent attorney with a background as a former examiner and appeal examiner at the Japan Patent Office, and currently Technical Director at Eichii International Patent & Trademark Office. Drawing on a cross-jurisdictional (horizontal) and historical (vertical) overview of amendment practice in Japan, Europe, and the United States, he posed a fundamental question:
“Are disclaimers really permitted such a degree of freedom?”
In principle, disclaimers are intended to function as an exceptional claim-drafting and amendment technique. However, in current Japanese practice, disclaimers have effectively become a standard or routine measure, a development that appears to diverge from the approaches taken in Europe (EPO) and the United States (USPTO).
This lecture was highly insightful, systematically organizing the current state of practice through statutory provisions, case law, international comparison, and the historical evolution of examination practice.
Because the lecture was available as an archived video, allowing repeated review, and because the lecture materials were also downloadable, it proved to be an extremely valuable learning experience.

0 Comments

ベンチャー企業の知財戦略

17/1/2026

0 Comments

 
高石秀樹パートナー弁護士・弁理士(中村合同特許法律事務所)が執筆された”ベンチャー企業の知財戦略”が、日本ベンチャー学会会報2025年12月号に掲載されました。
リソースの限られたベンチャー企業における知財戦略の重要性と、具体的な権利化の手法について解説されています。
特に、一つの出願に多くの発明を盛り込み、後の事業転換に合わせて権利を分割する「分割出願」の動的活用が、コスト抑制と柔軟な経営を両立させる手段として提唱されています。また、スタートアップが成長を加速させるためには、知財を法務上の守りだけでなく、資金調達や市場競争を勝ち抜くための経営武器として戦略的に位置づける必要があると結論付けています。
この高石弁護士の考え方について生成AIに調査・深堀りさせました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
ベンチャー企業の知財戦略
https://www.nakapat.gr.jp/wp-content/uploads/2026/01/%E6%97%A5%E6%9C%AC%E3%83%99%E3%83%B3%E3%83%81%E3%83%A3%E3%83%BC%E5%AD%A6%E4%BC%9A%E3%80%80%E4%BC%9A%E5%A0%B1%EF%BC%92%EF%BC%90%EF%BC%92%EF%BC%95%E5%B9%B4%EF%BC%91%EF%BC%92%E6%9C%88%E5%8F%B7.pdf
 
 
Intellectual Property Strategy for Venture Companies
An article titled “Intellectual Property Strategy for Venture Companies,” written by Partner Attorney-at-Law and Patent Attorney Hideki Takaishi (Nakamura & Partners), was published in the December 2025 issue of the Japan Venture Society Newsletter.
The article explains the importance of intellectual property (IP) strategy for resource-constrained venture companies and outlines concrete methods for securing IP rights. In particular, it advocates the dynamic use of divisional applications, in which multiple inventions are initially included in a single patent application and later divided in line with subsequent business pivots. This approach is presented as an effective means of balancing cost control with managerial flexibility.
The article further concludes that, for startups to accelerate growth, IP should be strategically positioned not merely as a legal defensive tool, but as a management weapon to support fundraising and to win in market competition.
I asked generative AI to research and further explore Attorney Takaishi’s perspectives, and then used NotebookLM to convert the results into infographics and slide materials.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and may not necessarily reflect actual circumstances; they may also contain inaccuracies. Readers are advised to keep this in mind when referring to the materials.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

成熟コモディティ市場での後発企業の知財・技術資産活用

16/1/2026

0 Comments

 
日経クロストレンド2026年1月8日付「打倒、王者「花王クイックル」 エリエールの奇策に新顧客が飛び付く」を興味深く読みました。長年市場を独占してきた花王が化学的アプローチで機能を細分化する一方、大王製紙はおむつ技術を転用した「ドライ・ウエット一体型シート」という物理的構造で「掃除プロセスの統合」を提案し、成熟したコモディティ市場において後発企業がいかにして知財と技術資産を活用し、絶対王者に挑むかというビジネスモデルのケーススタディになっています。
この内容について、生成AIに調査・深堀りさせました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
打倒、王者「花王クイックル」 エリエールの奇策に新顧客が飛び付く
2026年01月08日
https://xtrend.nikkei.com/atcl/contents/casestudy/00012/01790/?n_cid=nbpnxr_voicyed
 
 
Leveraging Intellectual Property and Technological Assets by Late Entrants in a Mature Commodity Market
I read with great interest the Nikkei Cross Trend article dated January 8, 2026, “Toppling the Champion ‘Kao Quickle’: New Customers Flock to Elleair’s Bold Strategy.” While Kao, which has long dominated the market, has pursued a chemical approach by finely segmenting product functions, Daio Paper proposes an “integration of the cleaning process” through a physical structure—the “dry-and-wet integrated sheet”—by repurposing diaper technology. This serves as a compelling case study of a business model showing how a late entrant can leverage intellectual property and technological assets to challenge an absolute market leader in a mature commodity market.
To further explore this topic, I had generative AI conduct research and in-depth analysis. I then used NotebookLM to convert the results into infographics and presentation slides.
Please note that the research and analysis generated by AI are based solely on publicly available information and do not necessarily reflect actual conditions; they may also contain inaccuracies. Readers are advised to take this into account when referring to the materials.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

育てるほど楽になる

15/1/2026

0 Comments

 
DeNAの永田浩矢氏の「育てるほど楽になる AI 開発体制を作っている話」を興味深く読みました。
DeNAの「AI駆動(AI-Driven)」開発モデルは、従来のAI支援を越え、AIを「育成対象のジュニアエンジニア」と位置づけ、プロジェクト固有の文脈を学習させることで、開発が進むほど工数が削減される「再帰的コンテキスト最適化」のモデルを提示しています。
また、「AI All-In」という経営戦略の下、人間はコードの書き手から「知性の設計者(コンテキスト・アーキテクト)」へと役割をシフトさせることが強調されています。
さらに、自動レビューやナレッジ循環の自動化により、レビュー工数の大幅な削減と品質の標準化を同時に実現する具体的なワークフローが紹介されています。
この内容について、生成AIに調査・深堀りさせました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
2026.01.06
育てるほど楽になる AI 開発体制を作っている話
https://engineering.dena.com/blog/2026/01/ai-driven-develop/
 
 
“The More You Train It, the Easier It Gets”
I read with great interest Koya Nagata’s piece, “Building an AI Development Organization That Gets Easier the More You Train It,” from DeNA.
DeNA’s AI-driven development model goes beyond conventional AI assistance. It positions AI as a “junior engineer to be trained,” and by teaching it project-specific context, presents a model of recursive context optimization in which development effort decreases as the project progresses.
Under the management strategy of “AI All-In,” the company emphasizes a shift in human roles—from code writers to “designers of intelligence (context architects).”
The article also introduces concrete workflows that simultaneously achieve a significant reduction in review effort and the standardization of quality through automated reviews and automated knowledge circulation.
Based on this content, I asked generative AI to conduct further research and deeper analysis, and then used NotebookLM to turn the results into infographics and slide materials.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and do not necessarily reflect actual conditions; they may also contain inaccuracies. Please review them with this in mind.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

Patsnap EurekaとTokkyo.Aiの比較

14/1/2026

0 Comments

 
Patsnapは2026年1月12日、業界初となる特許実務特化型ベンチマーク「PatentBench」を発表しました。AIの精度を数値で保証する「定量的アプローチ」を採用し、同ベンチマークにおいてPatsnap Eurekaが汎用生成AIモデルより正確にX文献を特定できること、すなわち先行技術文献を「より正確に、より漏れなく」発見できる能力を備えていることを示しています。
一方、リーガルテック株式会社は2025年12月18日、TokkyoAi(MyTokkyo.Ai)のDeep Research機能を発表しました。複数のAIが連携するディープエージェント方式を採用し、特許調査から明細書ドラフト作成までを自律的に遂行できる点が特徴です。従来のブラックボックス型AIとは異なり、思考プロセスを可視化する「Glass Box AI」を導入することで、知財実務における信頼性と透明性を確保していいます。
いずれも生成AIエージェントを活用した新たなツールといえます。
この2社の取り組みについて、生成AIに深堀させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
Comparison of Patsnap Eureka and Tokkyo.Ai
On January 12, 2026, Patsnap announced PatentBench, the industry’s first benchmark specialized for patent practice. By adopting a “quantitative approach” that numerically guarantees AI accuracy, the benchmark demonstrates that Patsnap Eureka can identify X documents more accurately than general-purpose generative AI models—that is, it has the capability to discover prior art documents “more accurately and more comprehensively.”
Meanwhile, on December 18, 2025, LegalTech Co., Ltd. announced the Deep Research feature of TokkyoAi (MyTokkyo.Ai). This solution adopts a deep-agent architecture in which multiple AI agents collaborate, enabling autonomous execution of tasks ranging from patent searches to drafting patent specifications. Unlike conventional black-box AI, it introduces a “Glass Box AI” that visualizes the reasoning process, thereby ensuring reliability and transparency in intellectual property practice.
Both can be regarded as new tools that leverage generative AI agents.
I asked generative AI to conduct an in-depth analysis of these two companies’ initiatives, and further had the results turned into infographics and presentation slides using NotebookLM.
Please note that the investigations and analyses conducted by generative AI are based solely on publicly available information and therefore may not necessarily reflect actual circumstances; they may also contain inaccuracies. Please review the content with this understanding in mind.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

ブログの紹介(2025年1月1日~2025年12月31日)

13/1/2026

0 Comments

 
ホームページの更新が上手くいっていませんので、
ブログの紹介(2025年1月1日~2025年12月31日)をこのブログ欄に掲載しました。
Your browser does not support viewing this document. Click here to download the document.
0 Comments

Patsnapの特許実務特化AIベンチマーク「PatentBench」

13/1/2026

0 Comments

 
Patsnapは、2026年1月12日、特許実務特化AIベンチマーク「PatentBench」を発表しました。そして、このベンチマークで、Patsnap Eureka新規性調査エージェント、ChatGPT-o3(ウェブ検索対応)、DeepSeek-R1(ウェブ検索対応)の3モデルを同一条件で比較した結果、Patsnap EurekaはTop100結果におけるX検出率・Xリコール率でそれぞれ81%・36%を記録、汎用モデルに比べてより正確にX文献を特定し、より漏れなく拾い上げられるAIであることを示しているとしています。
こうした生成AIの使い方をしている人はいないと思いますので、ChatGPT-o3(ウェブ検索対応)、DeepSeek-R1(ウェブ検索対応)のTop100結果におけるX検出率・Xリコール率の低さはそんなものだろうと思いますが、Patsnap EurekaがTop100結果におけるX検出率・Xリコール率でそれぞれ81%・36%というのは、研究者や技術者がスクリーニングに使うには十分な水準のようですが、まだ特許担当者が使って満足する水準には達していないのではないかと思ってしまう数字です。
ただ、こうした評価指標が構築されると、生成AIはあっという間に進化しますので、今後に期待したいと思います。
この発表について、生成AIに深堀させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
知財の仕事はAIに任せられるのか?- Patsnapは知財専用AI評価のグローバルスタンダードを発表
https://prtimes.jp/main/html/rd/p/000000006.000055070.html
 
Patsnap’s Patent-Practice-Specific AI Benchmark “PatentBench”
On January 12, 2026, Patsnap announced PatentBench, an AI benchmark specifically designed for patent practice. Using this benchmark, three models were evaluated under identical conditions: the Patsnap Eureka novelty search agent, ChatGPT-o3 (with web search enabled), and DeepSeek-R1 (with web search enabled). According to the results, Patsnap Eureka achieved an X-document detection rate of 81% and an X-document recall rate of 36% within the Top-100 results. Patsnap claims that this demonstrates Eureka’s ability to identify X references more accurately and retrieve them more comprehensively than general-purpose models.
I suspect that very few people are currently using generative AI in this manner, so the relatively low X-document detection and recall rates of ChatGPT-o3 (with web search) and DeepSeek-R1 (with web search) in the Top-100 results are probably unsurprising. That said, while Patsnap Eureka’s figures—81% detection and 36% recall in the Top-100—appear sufficient for researchers and engineers to use as a screening tool, they still feel short of a level that patent professionals would find fully satisfactory.
However, once evaluation metrics like these are established, generative AI tends to evolve extremely rapidly, so expectations for future improvements are high.
I asked a generative AI to conduct a deeper analysis of this announcement, and additionally had the results converted into infographics and slide materials using NotebookLM. Please note that the investigation and analysis produced by the generative AI are based solely on publicly available information, may not fully reflect the actual situation, and may contain inaccuracies. Readers are advised to keep this in mind when referring to the materials.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

NTTデータがシステム開発全工程AI自動化

12/1/2026

0 Comments

 
NTTデータグループは2026年度中にIT(情報技術)システム開発をほぼ生成AIが担う技術を導入するというニュースが流れました。
この要件定義から設計、コーディング、テスト、運用改善までを生成AIで連結する「AIネーティブ開発」=「システム開発全工程AI自動化」は、人手不足に悩む日本SI業界の構造を根底から揺さぶることになりそうです。
この動きについて、生成AIに深堀させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
NTTデータが挑む「全工程AI自動化」…人手不足の救世主か、巨大ブラックボックス”への片道切符か 2026.01.10
https://biz-journal.jp/company/post_392975.html
 
NTTデータ、AIがシステム開発 IT人材不足を解消
2026年1月1日
https://www.nikkei.com/article/DGKKZO93538910R00C26A1MM8000/
 
生成AI本格普及で企業や社会の仕組み再定義へ--NTTデータグループ・佐々木社長
2026-01-05
https://japan.zdnet.com/article/35242302/
 
 
NTT DATA to Fully Automate the Entire System Development Lifecycle with AI
News has emerged that the NTT DATA Group plans to introduce, during fiscal year 2026, technologies under which generative AI will handle almost all aspects of IT (information technology) system development.
This approach—referred to as “AI-native development,” which connects the entire process from requirements definition, design, coding, and testing to operational improvement using generative AI—has the potential to fundamentally disrupt the structure of Japan’s systems integration (SI) industry, which has long struggled with labor shortages.
I asked generative AI to conduct an in-depth analysis of this development, and then used NotebookLM to convert the results into infographics and presentation slides.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and therefore may not accurately reflect actual conditions and may contain inaccuracies. Please review the content with this understanding in mind.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

生成AI 知財保護と透明性に関する「プリンシプル・コード」

12/1/2026

0 Comments

 
内閣府が2025年12月26日に公表した「生成AIの適切な利活用等に向けた知的財産の保護及び透明性に関するプリンシプル・コード(仮称)(案)」は、AI時代の知的財産権検討会での審議を経て策定され、「コンプライ・オア・エクスプレイン」手法を採用しています。これは、コーポレートガバナンス・コード等で用いられる手法を参考に、生成AI事業者が原則を実施するか、実施しない場合はその理由を説明することを求めるものです。
コード案は3つの主要原則から構成されており、原則1は、AI事業者がコーポレートサイト等で使用モデルの名称、学習プロセスの内容、学習データの種類(ウェブクローリングや非公開データセットの有無など)、および責任体制の明確化といった事項の概要を公開することを求めています。
原則2は、法的手続きを検討している権利者から特定のURL(作品)が学習されたか照会があった場合、その有無を回答することを要求しています。
原則3は、生成AIを使ってコンテンツを作成した利用者が、自身の生成物と類似した既存コンテンツを発見した場合に、その元データが学習に含まれていたかを確認できる仕組みを求めています。
このパブリックコメント募集に対し、ウェブ上では多様な意見が出ていますので、生成AIに調査させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 

 
“Principles and Code” on Transparency and Intellectual Property Protection for Generative AI
The draft “Principles and Code (tentative title) on the Protection of Intellectual Property and Transparency for the Appropriate Use of Generative AI”, published by the Cabinet Office on December 26, 2025, was formulated following deliberations by the Study Group on Intellectual Property Rights in the AI Era and adopts a “comply or explain” approach. Drawing on methods used in frameworks such as the Corporate Governance Code, this approach requires generative AI operators either to implement the stated principles or, if they do not, to explain the reasons for non-implementation.
The draft code consists of three main principles. Principle 1 requires AI operators to disclose, on their corporate websites or similar platforms, an overview of matters such as the name of the model in use, the content of the training process, the types of training data employed (including whether web crawling or non-public datasets are used), and the clarification of responsibility structures.
Principle 2 requires AI operators to respond, when a rights holder considering legal action makes an inquiry, as to whether a specific URL (work) was included in the training data.
Principle 3 calls for a mechanism that allows users who have created content using generative AI to verify whether the original data was included in the training set when they discover existing content that is similar to their generated output.
In response to this public comment solicitation, a wide range of opinions have been expressed online. Accordingly, generative AI was used to investigate these views, and the results were further converted into infographics and slide materials using NotebookLM.
Please note that the investigations and analyses conducted by generative AI are based solely on publicly available information and do not necessarily reflect actual circumstances. They may also contain inaccuracies, and readers are advised to take this into account when referring to the materials.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

知的財産取引・オープンイノベーション環境の適正化

11/1/2026

0 Comments

 
日本の公正取引委員会や関係機関は、スタートアップ企業と大企業との間で知的財産やノウハウに関わる取引慣行について実態調査を行い、2019年以降、相次いで報告書やガイドラインを公表しました。公正取引委員会による2019年の「製造業者のノウハウ・知的財産権を対象とした優越的地位の濫用行為等に関する実態調査報告書」を起点とし、2020年の「スタートアップの取引慣行に関する実態調査(中間・最終報告)」、これらを受けて策定された2021年の「知的財産取引に関するガイドライン」及び2022年の「オープンイノベーション促進のためのモデル契約書ver2.0」、さらには2024年のガイドライン改定や「知財Gメン」による監視強化に至るまでです。
これらの調査により、大企業が優越的地位を利用して中小企業・スタートアップからノウハウや知的財産を不当に取得したり、一方的に不利な契約条件を押し付けたりする問題が浮き彫りとなりました。その結果を受け、政府各省庁や関連団体は契約ガイドラインの策定・改訂、モデル契約書の整備、支援制度の構築など様々な対策を講じています。
各資料に示された課題とその後の具体的な取組内容を整理し、スタートアップと大企業間の知財・取引慣行にどのような変化が生じたか、2026年1月時点までの最新動向も含めて生成AIに調査させました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
Ensuring Fairness in Intellectual Property Transactions and the Open Innovation Environment
Japan’s Fair Trade Commission and related government bodies have conducted fact-finding surveys on transaction practices involving intellectual property and know-how between startups and large enterprises, and since 2019 have successively published reports and guidelines. These efforts began with the Fair Trade Commission’s 2019 Report on the Fact-Finding Survey Concerning Abuse of Superior Bargaining Position Involving Manufacturers’ Know-How and Intellectual Property Rights, followed by the 2020 Fact-Finding Survey on Startup Transaction Practices (interim and final reports). Building on these, the government issued the 2021 Guidelines on Intellectual Property Transactions and the 2022 Model Contract for Promoting Open Innovation (ver. 2.0). Further developments include revisions to the guidelines in 2024 and strengthened monitoring by the so-called “IP G-Men.”
These surveys revealed problems in which large companies, by leveraging their superior bargaining position, unfairly acquired know-how or intellectual property from small and medium-sized enterprises and startups, or imposed one-sided and disadvantageous contractual terms. In response to these findings, relevant ministries and organizations have implemented a range of measures, including the formulation and revision of contract guidelines, the development of model contracts, and the establishment of support schemes.
I organized the issues identified in these materials and the specific measures taken thereafter, and asked generative AI to investigate what changes have occurred in intellectual property practices and transaction customs between startups and large enterprises, incorporating the latest trends as of January 2026.
Please note that the findings and analyses produced by generative AI are based solely on publicly available information and do not necessarily reflect actual conditions; they may also contain inaccuracies. Please bear this in mind when referring to the results.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

「国産モデル」生成AIが本格稼働

11/1/2026

0 Comments

 
学習から推論までを国内で完結できる「国産モデル」が待ち望まれていますが、これまでは性能が今一つでした。しかし、経済産業省およびNEDOが主導する「GENIAC(Generative AI Accelerator Challenge)」プロジェクトが第3期を迎え、計算資源の提供が実用レベルの基盤モデル創出に寄与してきています。
2026年は、「国産モデル」が、実証実験(PoC)のフェーズを脱却し、金融、製造、自治体、医療といった領域で本格稼働することが確実視されています。
これら「国産モデル」生成AIについて、生成AIに深堀させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
“Domestic Models” of Generative AI Enter Full-Scale Operation
There has long been strong demand for “domestic models” of generative AI that can complete the entire process—from training to inference—within Japan. Until recently, however, their performance had been somewhat underwhelming. That situation is now changing as the GENIAC (Generative AI Accelerator Challenge) project, led by the Ministry of Economy, Trade and Industry (METI) and NEDO, has entered its third phase, with the provision of computational resources contributing to the creation of practical, foundation-level models.
In 2026, it is widely expected that these “domestic models” will move beyond the proof-of-concept (PoC) phase and begin full-scale deployment across fields such as finance, manufacturing, local government, and healthcare.
I asked generative AI to conduct an in-depth analysis of these “domestic model” generative AI systems. In addition, the results were converted into infographics and slide materials using NotebookLM.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information. As such, they may not necessarily reflect actual conditions and may contain inaccuracies. Please keep this in mind when referring to the results.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

Geminiの勢いが止まらない

11/1/2026

0 Comments

 
2026年1月7日にSimilarwebが発表した「First Global AI Tracker of 2026」は、わずか12ヶ月の間に、OpenAIのChatGPTが86.7%から64.5%へと22.2%のシェアを失い、GoogleのGeminiが5.7%から21.5%へと15.8%シェアを増加したことを示しました。
この情報を生成AIに深堀させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
Geminiの勢いが止まらない。ChatGPTが圧倒されるのも仕方ない
2026.01.11 08:00
https://www.gizmodo.jp/2026/01/similarweb_global_ai_tracker_2026_jan_1_gemini_got_share.html
 
First Global AI Tracker of 2026 Gen AI Website Worldwide Traffic Share, Key Takeaways: → Gemini surpassed the 20% share benchmark. → Grok surpasses 3% and is approaching DeepSeek. → ChatGPT drops below the 65% mark.
https://x.com/Similarweb/status/2008805674893939041?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2008805674893939041%7Ctwgr%5E2992df4538222b5a1a5aaaca21a321452526e0a3%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.gizmodo.jp%2F2026%2F01%2Fsimilarweb_global_ai_tracker_2026_jan_1_gemini_got_share.html
 
 
Gemini’s Momentum Shows No Signs of Slowing
The First Global AI Tracker of 2026, released by Similarweb on January 7, 2026, revealed that over just 12 months, OpenAI’s ChatGPT lost 22.2 percentage points of market share, dropping from 86.7% to 64.5%, while Google’s Gemini increased its share by 15.8 percentage points, rising from 5.7% to 21.5%.
This information was further analyzed in depth using generative AI. In addition, the results were turned into infographics and slide materials using NotebookLM.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and therefore may not necessarily reflect the actual situation. They may also contain inaccuracies. Please keep this in mind when referring to the results.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

大学発ベンチャーと民間企業間の特許ライセンス契約を巡る訴訟事例

10/1/2026

0 Comments

 
大学発のベンチャー企業と民間企業の間で起きた、特許ライセンス契約を巡る訴訟事例では、争点が、実施料の支払い条件である共同研究契約などが締結されなかったことに対し、企業側に信義則違反の妨害があったか否かという点でした。
裁判所は、大学側の不十分な情報開示や関連特許の隠匿を重く見て、企業側の契約見送りを正当な判断と認定し、大学側の請求を棄却しました。
この事例は、産学連携における技術認識の乖離や知財管理の甘さが招く法的リスクを浮き彫りにしています。
この大学発ベンチャーと民間企業間の特許ライセンス契約を巡る訴訟事例からの教訓について、生成AIに深掘りさせました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
A Litigation Case Concerning a Patent License Agreement Between a University Spin-Off Venture and a Private Company
In a litigation case arising from a patent license agreement between a university-originated venture company and a private company, the central issue was whether the private company had wrongfully interfered, in violation of the principle of good faith, with the fulfillment of conditions for the payment of royalties—specifically, the failure to conclude related agreements such as a joint research contract.
The court placed significant weight on the university side’s inadequate disclosure of information and the concealment of related patents. It determined that the private company’s decision not to proceed with the contract was justified and therefore dismissed the claims brought by the university side.
This case highlights the legal risks that can arise in industry–academia collaboration from gaps in technical understanding and lax intellectual property management.
I asked generative AI to conduct an in-depth analysis of the lessons learned from this litigation concerning a patent license agreement between a university spin-off venture and a private company. The results were further developed into infographics and slide materials using NotebookLM.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and may not necessarily reflect the actual circumstances; they may also contain inaccuracies. Readers are advised to bear this in mind when referring to the materials.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

CES2026 でのNVIDIAとSiemensの基調講演

10/1/2026

0 Comments

 
2026年1月5日から開催された世界最大規模のテックイベント「CES2026」で、NVIDIAは、既存の処理能力を圧倒する新プラットフォーム「Vera Rubin」や、自動運転AI「Alpamayo」を公開し、計算基盤の劇的な進化を提示しました。また、シーメンスは、産業メタバースを実現する「Digital Twin Composer」を発表し、現実とデジタルを高度に融合させる産業AI革命の具体像を示しています。両社は強力な提携を通じて、AIを単なる生成ツールから、工場の自動化や社会インフラを制御する「フィジカルAI」へと進化させる方針を明確にしました。
投資家やメディアは、この技術革新が製造業の生産性を劇的に向上させ、今後の世界経済を牽引する長期的なトレンドになると高く評価しています。
生成AIに、NVIDIA基調講演・ Siemens 基調講演の内容、反響・評価について詳しく調べまとめさせました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
「現場のカイゼン」だけでは日本メーカーは負ける…エヌビディアの「AI産業革命」が示した全く新しい工場の正体
https://president.jp/articles/-/107513
 
 
NVIDIA and Siemens Keynote Speeches at CES 2026
At CES 2026, the world’s largest technology event held from January 5, 2026, NVIDIA unveiled its new platform “Vera Rubin,” which overwhelmingly surpasses existing processing capabilities, along with its autonomous driving AI “Alpamayo,” presenting a vision of dramatic evolution in computing infrastructure.
Meanwhile, Siemens announced “Digital Twin Composer,” a solution designed to realize the industrial metaverse, offering a concrete picture of an industrial AI revolution that tightly integrates the physical and digital worlds.
Through their strong partnership, the two companies clearly articulated a strategy to evolve AI from a mere generative tool into “physical AI” that controls factory automation and social infrastructure.
Investors and the media have highly praised these technological innovations, viewing them as a long-term trend that will dramatically enhance productivity in manufacturing and drive the global economy going forward.
I asked generative AI to conduct an in-depth investigation and summary of the content, reactions, and evaluations of the NVIDIA and Siemens keynote speeches. The results were further converted into infographics and slide materials using NotebookLM.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and therefore may not fully reflect actual circumstances and may include inaccuracies.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

「オプジーボ」の特許使用料を巡る紛争からの教訓

10/1/2026

0 Comments

 
がん免疫治療薬「オプジーボ」の特許使用料を巡る本庶佑氏と小野薬品工業の紛争は、当初の契約で定められた低いロイヤリティ料率が、薬の劇的な成功や他社との訴訟を経て大きな不信感へと発展し、最終的に280億円規模の和解が成立しました。
この事例は、日本の産学連携における交渉力の不足や情報の非対称性といった構造的な課題を浮き彫りにしました。
この「オプジーボ」の特許使用料を巡る紛争からの教訓について、生成AIに深掘りさせました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
Lessons from the Dispute Over Opdivo’s Patent Royalties
The dispute between Dr. Tasuku Honjo and Ono Pharmaceutical over patent royalties for the cancer immunotherapy drug “Opdivo” began with a low royalty rate set in the original agreement. As the drug achieved dramatic commercial success and litigation with other parties unfolded, the situation escalated into deep mistrust, ultimately culminating in a settlement reportedly totaling around ¥28 billion.
This case brought into sharp relief structural challenges in Japan’s industry–academia collaboration, including weak negotiating leverage and information asymmetry.
I asked generative AI to explore in depth the lessons that can be drawn from this dispute over Opdivo’s patent royalties. I also used NotebookLM to turn the results into an infographic and a slide deck.
Please note that the AI’s research and analysis are based solely on publicly available information; they do not necessarily reflect the full reality of the situation, and may include inaccuracies.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

2026年は”激変” 東大松尾教授が見通すAI勢力図

9/1/2026

0 Comments

 
YouTube「2026年は”激変” 東大松尾教授が見通すAI勢力図…半導体 ロボット 自動運転の未来【橋本幸治の理系通信】」(2026年1月3日配信)をアーカイブ視聴しました。
東京大学の松尾豊教授は、2026年までにAIの勢力図が劇的に変化すると予測していて、特に汎用人工知能(AGI)の完成やロボット技術の社会浸透に注目しています。
開発競争では、先行するOpenAIに対してGoogleが豊富な資源で猛追しており、さらに中国勢による高性能なオープンソースモデルの台頭が市場を揺るがしています。
半導体分野では、圧倒的なシェアを誇るエヌビディアの独占を崩すため、低消費電力と汎用性を両立させた日本発のスタートアップ「レンゾ」などの新たな挑戦者が現れています。
日本が再起するためには、「ソブリンAI」の観点から自国での開発能力を保持しつつ、多様な産業でAIを活用してイノベーションを創出することが不可欠です。
次世代の製造拠点を目指すラピダスを含め、ハードウェアからソフトウェアまでを一貫して国内で完結させる戦略が、日本の将来を左右すると説いています。
この東大松尾教授の予測について、生成AIに深堀させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
2026年は”激変” 東大松尾教授が見通すAI勢力図…半導体 ロボット 自動運転の未来【橋本幸治の理系通信】
https://www.youtube.com/watch?v=mJg8MUcF99Y
 
 
2026 Will Be a “Seismic Shift”: The AI Power Map as Foreseen by Professor Matsuo of the University of Tokyo
I watched the archived YouTube program “2026 Will Be a ‘Seismic Shift’: The AI Power Map Foreseen by Professor Matsuo of the University of Tokyo… The Future of Semiconductors, Robots, and Autonomous Driving [Koji Hashimoto’s Science & Engineering Channel]” (streamed on January 3, 2026).
Professor Yutaka Matsuo of the University of Tokyo predicts that the AI power landscape will change dramatically by 2026, with particular attention to the completion of artificial general intelligence (AGI) and the widespread social adoption of robotics technologies.
In the development race, Google—backed by vast resources—is rapidly closing in on the early leader OpenAI, while the rise of high-performance open-source models from China is shaking the market.
In the semiconductor field, new challengers are emerging to break NVIDIA’s overwhelming dominance, including Japanese startups such as “Renzo,” which aim to achieve both low power consumption and high versatility.
For Japan to stage a comeback, it is essential to maintain domestic development capabilities from the perspective of “sovereign AI,” while also leveraging AI across a wide range of industries to drive innovation.
Professor Matsuo argues that strategies enabling an end-to-end domestic ecosystem—from hardware to software—including initiatives such as Rapidus, which aims to become a next-generation manufacturing hub, will be decisive for Japan’s future.
I asked generative AI to further explore and analyze Professor Matsuo’s predictions, and then used NotebookLM to turn the results into infographics and slide materials.
Please note that the research and analysis produced by generative AI are based solely on publicly available information and do not necessarily reflect actual conditions; they may also contain inaccuracies. Please review them with this in mind.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

AI agent trends 2026 report

8/1/2026

0 Comments

 
GoogleのAI agent trends 2026 reportは、2026年までにビジネスのあり方を根本から変えるAIエージェントの5つの潮流を解説しています。
従来のAIが単に質問に答えるだけだったのに対し、エージェント型AIは目標を理解し、自ら計画を立てて複数のアプリケーションを実行する能力を備え、人間を単純作業から解放して戦略的なオーケストレーターへと進化させますが、Googleの考え方がよくわかる冊子です。
 
AI agent trends 2026 report
https://services.google.com/fh/files/misc/google_cloud_ai_agent_trends_2026_report.pdf
 
 
AI Agent Trends 2026 Report
Google’s AI Agent Trends 2026 Report explains five major trends in AI agents that are expected to fundamentally transform the way businesses operate by 2026.
While conventional AI has mainly been limited to answering questions, agent-based AI understands goals, autonomously creates plans, and executes multiple applications. By doing so, it frees humans from routine tasks and elevates them into strategic orchestrators. This booklet clearly illustrates Google’s perspective on that evolution.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

動画生成AIの新しいベンチマーク「MMGR」

7/1/2026

0 Comments

 
動画生成AIのこれまでの評価は見た目の忠実さが評価の中心で、評価指標が見た目の美しさに偏っていました。新しいベンチマーク「MMGR(Multi-Modal Generative Reasoning)」は、動画生成AIが現実世界の物理法則や論理的整合性をどの程度理解しているかを測定する評価指標です。現時点では、いずれの動画生成AIも低い点数ですが、こうした評価法が出来たことで、この分野でも飛躍的に性能が向上するものと思われます。
新しいベンチマーク「MMGR」に関して生成AIに深掘りさせました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
【論文】【AI】マルチモーダル生成AIの「推論能力」を測る新ベンチマークMMGR
https://note.com/r7038xx/n/n662c41323f6a
 
MMGR: Multi-Modal Generative Reasoning
https://arxiv.org/abs/2512.14691
 
 
A New Benchmark for Video Generation AI: “MMGR”
Until now, the evaluation of video generation AI has primarily focused on visual fidelity, with assessment metrics heavily biased toward surface-level visual quality. The new benchmark, MMGR (Multi-Modal Generative Reasoning), is an evaluation metric designed to measure how well video generation AI understands real-world physical laws and logical consistency.
At present, all video generation AIs score relatively low on this benchmark. However, the establishment of such an evaluation framework is expected to lead to dramatic performance improvements in this field as well.
I conducted an in-depth exploration of the new benchmark “MMGR” using generative AI, and further transformed the results into infographics and slide materials using NotebookLM.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and may not necessarily reflect actual conditions. They may also contain inaccuracies. I ask that you review the materials with these limitations in mind.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

次世代EUVリソグラフィー向けMOR関連特許分析

6/1/2026

0 Comments

 
半導体製造の微細化が限界に達する中、次世代の露光技術であるHigh-NA EUVへの対応が急務となっていて、従来の有機レジストに代わり、光吸収率と解像度に優れた金属酸化物レジスト(MOR)への転換が、物理的制約を打破する鍵として注目されているということです。
生成AIに、次世代EUVリソグラフィー向けメタル酸化物レジスト(MOR)の技術分析で現れた各企業の次世代EUVリソグラフィー向けメタル酸化物レジスト(MOR)関連特許出願状況の分析を行わせ、各社の次世代EUVリソグラフィー向けメタル酸化物レジスト(MOR)関連特許出願戦略を分析させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
半導体レジストの新星「MOR」、ADEKAが材料 東エレクに米社挑む2025.12.12
https://xtech.nikkei.com/atcl/nxt/column/18/00001/11259/
 
 
Patent Analysis of Metal Oxide Resists (MOR) for Next-Generation EUV Lithography
As the miniaturization of semiconductor manufacturing approaches its physical limits, addressing High-NA EUV, the next-generation lithography technology, has become an urgent priority. Against this backdrop, a shift from conventional organic resists to metal oxide resists (MOR)—which offer superior EUV absorption and resolution—is attracting attention as a key means of overcoming these physical constraints.
Using generative AI, we conducted an analysis of the patent filing landscape related to metal oxide resists (MOR) for next-generation EUV lithography, as identified through a technical analysis of MOR technologies. Based on this, we examined the patent filing strategies of individual companies in this field. The results were further transformed into infographics and presentation materials using NotebookLM.
Please note that the analyses and findings generated by AI are based solely on publicly available information and therefore may not fully reflect actual circumstances. They may also contain inaccuracies, and should be interpreted with these limitations in mind.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments

ADEKAの金属酸化物レジスト(MOR)

6/1/2026

0 Comments

 
「半導体レジストの新星「MOR」、ADEKAが材料 東エレクに米社挑む」という日経クロステックの記事を読みました。半導体製造の微細化が限界に達する中、次世代の露光技術であるHigh-NA EUVへの対応が急務となっていて、従来の有機レジストに代わり、光吸収率と解像度に優れた金属酸化物レジスト(MOR)への転換が、物理的制約を打破する鍵として注目されているということです。
この技術革新を受け、ADEKAは32億円を投じて新プラントを建設し、2028年の量産開始を目指す戦略を打ち出し、大きな影響をあたえているようです。
金属酸化物レジスト(MOR)に関して生成AIに深掘りさせました。
さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。
なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。
 
半導体レジストの新星「MOR」、ADEKAが材料 東エレクに米社挑む2025.12.12
https://xtech.nikkei.com/atcl/nxt/column/18/00001/11259/
 
 
As the miniaturization of semiconductor manufacturing approaches its physical limits, there is an urgent need to respond to High-NA EUV, the next-generation lithography technology. Against this backdrop, a shift from conventional organic resists to metal oxide resists (MOR)—which offer superior light absorption and resolution—has been drawing attention as a key to overcoming fundamental physical constraints.
In response to this technological innovation, ADEKA has announced a strategy to invest 3.2 billion yen in the construction of a new plant, aiming to begin mass production in 2028, a move that appears to be having a significant impact on the industry.
We asked generative AI to conduct an in-depth analysis of metal oxide resists (MOR).
Furthermore, the results were converted into infographics and presentation slides using NotebookLM.
Please note that the research and analysis conducted by generative AI are based solely on publicly available information and may not necessarily reflect actual conditions; they may also contain inaccuracies. Kindly review the materials with this understanding.

Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
Your browser does not support viewing this document. Click here to download the document.
0 Comments
<<Previous

    著者

    萬秀憲

    アーカイブ

    January 2026
    December 2025
    November 2025
    October 2025
    September 2025
    August 2025
    July 2025
    June 2025
    May 2025
    April 2025
    March 2025
    February 2025
    January 2025
    December 2024
    November 2024
    October 2024
    September 2024
    August 2024
    July 2024
    June 2024
    May 2024
    April 2024
    March 2024
    February 2024
    January 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020

    カテゴリー

    All

    RSS Feed

Copyright © よろず知財戦略コンサルティング All Rights Reserved.
サイトはWeeblyにより提供され、お名前.comにより管理されています
  • Home
  • Services
  • About
  • Contact
  • Blog
  • 知財活動のROICへの貢献
  • 生成AIを活用した知財戦略の策定方法
  • 生成AIとの「壁打ち」で、新たな発明を創出する方法