|
画像認識AIの分野の大きな発展には驚きを隠せませんが、その発展は、長年主流だった局所的な特徴抽出を得意とする「畳み込みニューラルネットワーク(CNN)」から画像全体の文脈を一度に把握できる「Vision Transformer(ViT)」への歴史的なパラダイムシフトによるものということです。 画像認識分野におけるこの技術革新は、動画生成AI(Sora)やマルチモーダルAI、医療・科学分野など、静止画認識の枠を超えた幅広い領域に革命をもたらしました。 画像認識AIの発展について、生成AIにまとめさせました。。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。 なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。 The Evolution of Image Recognition AI The remarkable advances in the field of image recognition AI are truly striking. These developments are largely driven by a historic paradigm shift—from Convolutional Neural Networks (CNNs), which excel at extracting local features and long dominated the field, to Vision Transformers (ViT), which can capture the global context of an entire image at once. This technological innovation in image recognition has sparked a revolution across a wide range of domains beyond static image analysis, including video-generation AI (such as Sora), multimodal AI, and applications in the medical and scientific fields. With regard to the evolution of image recognition AI, we tasked a generative AI system with compiling an overview, and further used NotebookLM to create infographics and presentation slides based on the results. Please note that the analyses and insights generated by AI are based solely on publicly available information and may not fully reflect real-world conditions. They may also contain inaccuracies, and should therefore be consulted with appropriate caution. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document.
0 Comments
Leave a Reply. |
著者萬秀憲 アーカイブ
January 2026
カテゴリー |
RSS Feed