|
これまでのAIは、即時に答えを返す仕組み(直感的処理)、論理的に考えて結論を出す仕組み(熟考的処理)を備えた高性能な“作業エンジン”として活用されてきました。しかし、このタイプのAIは、本質的には「指示待ち」であり、長期的な目的や文脈を自ら管理することはできません。 近年提案されている「System 3」は、この限界を超えるための経営判断に近いメタレイヤーに相当します。System 3は、自らの判断プロセスを監視・修正する能力(メタ認知)、相手や組織全体の意図を推測する能力、短期成果だけでなく長期価値を基準に行動する動機付け、過去の意思決定と結果を蓄積・再利用する記憶、を統合し、AIの行動を“点”ではなく“時間軸”で最適化する役割を担います。 このSystem 3を実装したフレームワークがSophiaです。 Sophiaの本質は、AIを「業務自動化ツール」から、方針・価値観・学習履歴を内在化した“準・組織メンバー”へと進化させる点にあります。 経営・戦略の観点で見ると、そのインパクトは以下に集約されます。 ・AIが戦略意図を理解したうえで行動するため、単発業務ではなくプロジェクト全体を任せられる ・過去の成功・失敗を学習し、意思決定の質が時間とともに向上する ・人が常に監督しなくても、方針逸脱や短期最適を自己修正できる ・結果として、AIが人の判断を代替するのではなく、経営判断を支える持続的パートナーになる つまり、Sophia/System 3型AIは、 「指示待ちAI」から「共に成長するAI」への転換を意味します。 このSystem 3を実装したフレームワーク「Sophia」について、生成AIに調査させました。さらに、結果をNotebookLMでインフォグラフィック、スライド資料にさせました。 なお、生成AIによる調査・分析結果は、公開された情報からだけの分析であり、必ずしも実情を示したものではないこと、誤った情報も含まれていることについてはご留意されたうえで、ご参照ください。 [Submitted on 20 Dec 2025] Sophia: A Persistent Agent Framework of Artificial Life Mingyang Sun, Feng Hong, Weinan Zhang https://arxiv.org/abs/2512.18202 Sophia: A Persistent Agent Framework of Artificial Life https://arxiv.org/pdf/2512.18202 Sophia: AIが自ら学び成長する「System 3」アーキテクチャ、メタ認知で80%の推論削減と自律的目標生成を実現(2512.18202)【論文解説シリーズ】 https://www.youtube.com/watch?v=V9kj9WzS5Tw&t=10s From “Instruction-Following AI” to “AI That Grows Together with Us” Until now, AI has been used primarily as a high-performance “work engine” equipped with mechanisms for producing immediate answers (intuitive processing) and for reasoning logically to reach conclusions (deliberative processing). However, this type of AI is essentially instruction-following: it cannot autonomously manage long-term goals or broader context. The recently proposed concept of “System 3” corresponds to a meta-layer akin to executive decision-making, designed to overcome these limitations. System 3 integrates capabilities such as: monitoring and correcting its own decision-making processes (metacognition); inferring the intentions of counterparts and the organization as a whole; acting based not only on short-term outcomes but also on long-term value; and accumulating and reusing memories of past decisions and their results. Through this integration, System 3 optimizes AI behavior not as isolated “points,” but along a continuous time axis. The framework that implements this System 3 is Sophia. At its core, Sophia evolves AI from a mere “business automation tool” into a quasi-organizational member that internalizes policies, values, and learning history. From a management and strategy perspective, its impact can be summarized as follows: • Because the AI understands strategic intent, it can be entrusted with entire projects rather than isolated tasks. • By learning from past successes and failures, the quality of its decision-making improves over time. • Even without constant human supervision, it can self-correct deviations from policy or short-term optimization biases. • As a result, AI does not replace human judgment, but becomes a sustainable partner that supports executive decision-making. In other words, Sophia / System 3–type AI represents a transition from “instruction-following AI” to “AI that grows together with us.” I asked generative AI to research the System 3–implemented framework “Sophia,” and then used NotebookLM to turn the results into infographics and presentation slides. Please note that the research and analysis conducted by generative AI are based solely on publicly available information; they do not necessarily reflect actual conditions and may contain inaccuracies. Please keep this in mind when referring to the materials. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document. Your browser does not support viewing this document. Click here to download the document.
0 Comments
Leave a Reply. |
著者萬秀憲 アーカイブ
January 2026
カテゴリー |
RSS Feed