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(Accuracy)

Higher accuracy
often requires more
complex models.

Calculation Volume

ViT-B = 18 billion FLOPs/image
(30x more than GhostNet CNN).
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Performance

Compute Cost
(FLOPs/GPU)

Increased
computational
demands and time.
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Training Time

DETR (Early) = 2000 GPU Hours
VS
Faster R-CNN = 380 GPU Hours.
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