HEFEGDLIR . CNNOFEIDS
Transformer, Z L THERAIDFEFKA

Gemini 3 pro
1. Fm:N\SEALLTNDREBEER VAN

2010/, avE1—4E 23> (Computer Vision: CV) DHFR (X, HE2—DDM#E EH II2L-T
XEEINTW:z, EHIAHAH=—2—TF )Ly kT—2% (Convolutional Neural Network: CNN) T#%H %,
2012 M ImageNeta> X713 (ILSVRC) IZH 1T DAlexNetD EBIMZEEFI L. ZNETD/ N\
FOSTMEFHE (SIFTRPHOGHE) DR ERhoE ., T4—T5—=UF DEEBRZUVIEN
f=o TD# . VGG. GooglLeNet, ZL TResNet&fm< L DBFET. CNNITEERFRE. MiAigH. &
TAT—2avEWN=Ho B3R VICENT, NEZEZETHMEEEMEHLTE . ARE L
IVOZTORMIZIE., TEBZERSH S EHAH (Convolution) KN EERE TH D IEWLSEDLEFLVE
BERH. HAINITRITTINFELTL:=DTH S,

LAL. 2020 D HY . ZDEHITBEMNSE ST, [An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale |EWNSHKFELE AL DR ERIZEIZLT-
**\/ision Transformer (ViT) **[&. CNND 7 A T TAT1 THAEAAHB I1Z—UIERAET. B
REENIE (NLP) THINZEIN® TLM=Transformer7 —F T F ¥ & ZDEFEER T —2(ZEAL.
LB DR = ¥5 E (State-of-the-Art: SOTA) ZEYEZ-DTH5 ',

COHEEFHELIBEDEHTELL, ThIE, ANEEFRZEDLSICNIEL, BFETRE
NEVWSIERNLBE RO —— ST ALY T ——TH>T-. CNNIT BT M ETEA £
(FT2AZEMRT S (Bottom-up) 17 TO—F THADIZxtL. Transformerl& & #1H 5 K ik #%e
BRMEZEIRZ . XKD h CHMEERET B (Global-first) I770—F% L5,

ARUR—ME. COELREImAZHFELLL. 2026 FREICESIETHOABREETILDE LTS
B DEMICHTT LD THD, MPFDVITARZ TN I TF—2DOEMS JOIEFEIR M EL
SEBMUOMNIZLTHRRENTF=H . CNNETransformer@ & (NATYYRFETIL) ALVAIZLTE
ARG ELEST=D . FLT2024FE M 520265F 2H T TIEFE I L ZZF (T 1= Diffusion
Transformer (DIT) IICK A BB AL ERICDONTEHFR T D, SHIT, BRIFFULBERBICEEEDS
9. Transformer®d Z REAHMGET EE D2 Z$THE 9 5[ State Space Models(Mamba) 10D & 58
O EE-RBEIHETOILAIRIL—IZDONTEREIEY FTIF5,



MET7—X 77 F v DEILRHE (2012-2026)

DiT/Sora

F1vhVZ

ResNet Swin [ﬁ A

DiT/Sora
F1vbvVS

AlexNet
TLyIARY b

Vision Mamba
EYarevn

AlexNet

TLyORARYk
ViT ConvNeXt
Eatd VTR
2012 2015 2020 2021-22 2024 2025-26

CNNOBEERHA bTransformerD B8, £ L TERAI LR ZERT HTE (DT, Mamba) ~D R, H#HAI/ A TR
DOHRELBEANRYBENTOIHRFIAZ S,

AOWHRETLHDIE, Bixb7IILd) X LDOELFHESETIEEL, NE#HK/ (7 X (Inductive Bias
JIDBRHEMEEZ KD REEBROELETHS,

2. ¥t FZETCNN | DME%E T Vision Transformer | D EZE

2.1 1Z5NEI/ N1 7 X :CNND &R A LR R D IE{K

HECNNIXINIZEETIZHMA =DM, ZLT. BEVITIEZDFHEFHE=-DH, TDRIEF
#9317 R (Inductive Bias) 1EWSBRIZH 5. BB SA T REE, 2ET7ILTYR LAKE

DT =R L TFHETIMIHERT S, EFLEEICEBRMIHAAENTRE O]
DtEyrTHSB ',

BERT—RICE. TFANT —SLEERGHIHE DM HMEENHSH. CNNIZ, LLT D58 AT
BINAT RAEFDRIITREFFESN T =

1. BFTtE (Locality) : BIfERDEVEILIE, EZLBENT-EV L KYLEBEDE /)L L8 0VE
B FREFEDELSIIRETH S, CNNDEHIAH TILE (H—FIL) &, 3x30OTXTELNDT1=F
PR EE DA ESEBT S, ChizkY, TYPOTIRFrEN =BT EE S RAIZH
HTES,



2. BEF L (Translation Invariance) : EfRAOYEANEZITMELTLNTH, ZDRI—1%
FEDLLHENEWIRETHS B IEHNEBROE LIZWTEATICLWTE, ZNRIERICIMIEIT
H5). CNNIZXIEH £ F (Weight Sharing) 1EWSAHZ X AIZKY ., RUCHEHFERER (DL
2 EEBRERICASARSE TERAT 0. COMEEZERITESRT D

3. FEFE#EE (Hierarchy) : B#iHFH(Tyd B EHAEHE TERGHH(B. BE)Z/EY.
SLICENLEHAEDLE TR (BE)ZBR T HELRETHD, TV T BICLDHEM
RBOEMBEBDBEAERNINEERT S,

NEDNATRIE BHRELNSIT—IDHEERBIZTEBL T =, TD71=%H . CNNIKELE R D7

WF—2ETHEPRMIZEEL, SLRIEEREEZ R IBETE-D THh S (Sample Efficiencyhim Ly)*
LML, CHOTHIIDER ICZH ., REIMICIEHIFEE o1z, CNNABEHRE A D XAR (V' A—/3\)L
AVTHFRANZEBT 5=-HI21. BEFRERTZAEE (Receptive Field) ZIE 1T AN ENH D,

LAl ENEITBEZRLTH. RENICBMMGEREDRBRAERTHA-O. RIEHDOIKEE

{% (Long-range Dependency) Z8 ZA HREHICIER AL HY . STEMEDE T OHEROFREE
NWTW=DTHD %

2.2 Vision Transformer (ViT) O IEH A/ RAN— 3>

20204128 . Google ResearchmH &R L1zViTIE. COCNNDRREEET 51D THoT=, VITD
B BBEBOHTOUVT LN DREMTH S, [BEBRE16XI6EVEILEED /Y FIZHEIL. Th
EHIE (V) DFIEL TR, EZ 7% Transformer EncoderlZA D3 %1057 FO—F 1!

o

CZIZlE. BHRAAHD ESHEBEFIED/N—FI—RENIFMEINA T RFIFEAEFELLEL,
RHOYIZBAINIE=OA . NLPA B TEGERILTLI=**Self-Attention (B B EE#4E) **TH
%, Self-Attentionld, AAV—T 2V RAADITRTDER(F—I) R . MMODTRTHOERLEEME
H{EAL., EEE (Attention Weight) 2518 35L& ATREICT B,

VITO7 —FTOF v EIRE
VITOWMEIO—%FMICRSE. TDREMEMNRRID:

HxW xC
1. /1\vF 5 E|(Patch Partition) : A A& 1%$€R o %, Pxpd)lﬁliﬂ%x“/\"\y

=L, N = HW/P? gouFe—boRizd %, Bz (£, 224x224DEEE
16x160)/\J9'-IJ‘i|JT%>& 196D /Ny F R ELNS,
2. #7218 A H (Linear Projection) : &/3yF%75vyMEL . FE AL E (Linear

LayenN #BLT D REDARIM L (BHRS) IZEET 5, SHIECNND BH DB HAHE
[ZBTLBA, TAILEANELRLRWNVATELS ',

3. fIET>a—T >4 (Positional Encoding) : Transformer BAILIEF OIE DB &1
%0 (Permutation Invariant) . D 71=& . RN D /Ny F D ERMEREFREZRIFT 50
CEBARELGMEEORAARIMNLENET S, ChICKY ETLEITELD /YT 1ETH
TORYFIERBITEDLSIZHD

4. Transformer Encoder: Multi-Head Self-Attention (MSA) &Multilayer Perceptron (MLP) @



BEEHENRD, EBOHIIZ(XLayer Normalization (LN) @S, 75 = 3% (Residual
Connection) B fThh b,

5. MLP Head: BERTERI#RIZ. SEBEICHFRIGT VS A R—S2 (token) 1ZEBML . XEBETHI
D=V DHENEEBERDORELLTHERICET

AN XL : BFAEHAHA vs KB 7 T3>

CNN ViT
(BHAAFRZa1—F IRy hI—2) (Vision Transformer)
FRPRHIEERT KIEMAEE(ER
T i
SEe= BHTIA
= ot i
e !

eRETTVVIY

BB OREA LT ENROXRENT T3>

E : CNNIZEBFIAE 7 1 LB (B:3x3) ZBAL. BEERDIETRRICREF LTS, A - ViT[ESelf-Attentionl< &
Y. ZYOENMEBRADEEN/ Sy FRL (§]: ZLhE) OBRMEZIRASIENTED,

DT —FTIOFYDERRDF R, ** Kigfi 12 B EF (Global Receptive Field) |**& & #H 5
BoTWAIETHS, CNNAEBEFILAZITNIEELDEREH S TELLDIZH L, VITIZE1E
BOS. BEOELEDNNYFEATONYFOREBRELIRADIENTES, CNIZKY. HEARD
BRNBEA TN Y (FIIL—230) BREBEICKRAE>TVYTHIHEETH, 20 XARH
SHIELSEHTHIEMNTAREIZRED 4,

2.3 EINTHE |IZERIL T SRR : JFT-300MDHEI &R —1) 27 Al

VITORX W EEEZE5Z-EL5—DDERIE. ZOMHEHMETH S, ElL. ImageNet (1005 1) D
FOLTHRE | T—2v b TEE LGS, VITOFEE [LResNetIZE BI5E N E L, IR/ T
REFEGVLWVITIE, BROBAMGEECTIRIBOMELZ. T—2hotEarhoE2E LEGTN
EFRSHN=0. BRET—2%%ELT S (Data Hungry) Mo T#H 5 >, CNNIZESTHE-YRTD



MEYESEVRILEERNHDHIEVSIERSA VTR T —HZBLTRERELGTNIEGLRELY,

LA L. Googledt B MJIFT-300M (3EH) ELVS B RRET —2 Y TERIZEEZITIE KIRE
—ET5, T—HREN—EDREFRBZI-LE. N—Fa—REN=/ (7 X (CNNORE) [FH LA
TEDEIEGY ., TN RERIC/NI—2FF SVITOHLER M (Scalability) B EFILI-DTH S,
ViT-Large®ViT-Hugek W\ >=E KETJ/LIE. ResNetD R RZEE 2 LB A . SOTAZER LT, Ch
F . T+RGEHEELT—2DHNIEL, FMHANATRIEEETRAEETHY . FEFTASNNATR
FULBN-RBEEFTTEDIEWVS T4—T 53— T O#F =7 Xr—1)> % Bl (Scaling Laws)
ERENHCERILE-BERETHo1

3. VITO#E L E/NAT 1)1 :2021-2024 F D flT E #7

VITOZEIBIZEGHUTHo=H . FIHIDVITVanilla VI IZITER LD KEZLHEEENH-1-. FhiT
ZEQHLE]. HEARMNDESI. FLTT 4RO EIITHD, 2021FLIFEOHEIL., =
NoDEBEERARL . TransformerzZE R/ NV ITR—UANEEILSE B EIZEDEINT,

3.1 IR/ NAL T ADHEE A : Swin Transformer & [ 2 1 &

Vanilla VITO B X 0 R & 14 .. EfefREE - L CHEE A - REMmIc LTz (O(N?))

<hot-s b= N g@Eey 42 H X W znid 310 . B0 REENUEIZHNIE.
c—4 T 4AfEIZ73Y) . Self-AttentionDEtE E1F16ZI12455 . ChiE. SEEEBREDO . E9EIL
BEDFRALADELRET A TF—a AR TICEWTHGHERINL Ry EEE 1,

CDFEREZEREIRL . 20215 DICCVTBest PaperE# = & L1=M A%, Microsoft Researchh F &k L 1=
Swin TransformerT#&H %, SwinlZ. CNN®D & 57 B B 48 1& (Hierarchical structure) 1&T B4 |
ZTransformer(ZIAIZEEALE ",

e Window-based Attention: El{& £ {KIZxtL TAttentionZ{T5D TIE %L, BEIEZ/NSE D«
VR (B TxTI8yF) IZHEIL , AttentionFtEEFZF DI/ RORNIZRET %, iz kY, &

wer vFHicLcen(OWNV)) sz sz ezmmLi,

e Shifted Window Mechanism: BEZO( R DORTHET AT TIX. D40 RIEDIEHRD
PYRYIMESN, ZRBFNBRESNTLES. Swinlk, BZ LTIV FODREILEZS
59 (Shift) TET. BEYA R IBDERIGEZRIREIZLT-,

o BEEMRI:CNNOT—)UITBOLSIZ. BHAELIZDONT/\yFZEHEE (Patch Merging)
LTHREBEEZTIF. FrRILHEEOTEELFRALEZ, ShiZkY. ¥ERE (FPNEE) O+
GAT—ay (U-Netig &) DAy IR—2 LT CNNEZFDFEFBEE A ATREA AN E
EEL-,

Swin Transformer(Z. ImageNetf= 1+ T4<, COCO (AR H) PADE20K (25 AT —2av) I2H
WTHEHEFDSOTAZEEHL . Transformer® R LN D ARV TEHCNNE ZE TEAHEERERALY:

n
o



3.2 T—ANEEE# Z 5 : Masked Autoencoders (MAE)

VITOT T —4E8 8 1T 3 2EZEELTEELEzON, BEHKEMHYEE (Self-Supervised
Learning) . #Z**Masked Autoencoders (MAE)**T# % (20224 . Meta Al)'°, NLPIZE1+3
BERTO K INCMEIN-COFEI. REETILOEEFEE—EIET,

MAED 7 7O—FIEBH TV TILTHS:

1. ANEBRZENNVFIZHEIL. EDKREBH (B1:75%) &5 F LIZRT (RRITB),
2. BRYDRZB/\0F(25%) =172 Toa—4F—ICA AL, BERRER/S.
3. BELTI—H—ZRAVT BAERREIRIN—IUNE TOEZRDEREEZETT S,

CDRRVIFFEICHZENB L, BRDOTSRNRELIZRETTOEREETT H-HIZE, €
TIVETIEDRARL TTORF v DERFGE L To—U D XARME S E 12 R<ERLTOETAIE
75750, NLP(BERT) TIEVY RV ER(TISBIEETHAN ., BRIETRENSV=H. 15%E5E
WIRIVENCLAMBEMERBEFELRTENRREINS:

MAEDFIRIEZD0H 5. F—IC. ZEMETHD, TRIINZT5%D /Sy FIEToa—F —IZA R
SNBNEO . FEBOGHEELAT)EELZBIMICHRETES, FZIC. RFRENTHD. NI
BLT—2ZRAVW-EiIEE LT TRAGEEREZER/TE. LROIRNILNET—ETDI7A
UF1—ZU S TSOTAZER L=, CHIZEY VTSR FEERT -2V INDIREN DR
WEh, KYLRELRAMA~ADBERAMNAIREE ST,

33 NATYYRETFTILDSERRZ : CNNIZFEZT

— 7. CNNRIL B> TIXULVEMoT=, Transformer® M ERZ S H L. ZNECNNIZERY AN SR
HDEAT, TDHRERH A ConvNeXtTH 5 (20224 ) , ConvNeXtld ., ResNetDEEFH F R &
L. VITOKEBERE Sy FIISEVWA—RILY 4 X GELUEM LB S, LayerNorm, AdamW#4 7'
TARAYLEE) EHEMICTEML THESNIZCNNTHD ',

ConvNeXtl&. Self-Attentionz — 8l {# FALZ UL CNNTHYE AN S Swin Transformer& E&
LULEDREEEZERL-, ZhiL., ITransformer®ig s D — &R (E . AttentiontéEZ D1 DKV, F
BLIERT—FTIOFvOME (T VOGEEHRE) [CHAHICEETREL TS, F=. GoogleD
CoAtNett>BoTNet®D &3, W \ETIXCNNZ AVLWTREAMGHB(TYDOTIRFv)ZME
BICHE L. FEUL B TlE Transformerd AL TRIBIGHE R/ E TN/ TR 7 —FTUF v 1H.
INEDESERBENDESEMILITHEERELTERLEES,

4.2025-2026 F D Ex AT #R : ImageNet &Ykt H DR TE Hh

2026 F TRTE ., FILEREICE THSOTAF WL, BRET7T—FTIOFYDBEEANL ZELIE,
T—RRT—=I)T  ZFLTRILFE—FILHEDBHRENERITLTS,

4.1 ImageNet Top-1 FEE D EE =
R D —F —R—FK (2025-2026% ) [ZH LV T. ImageNet (1K) DTop-14EE L. A D THEDH



FTHO-90%NEFIBZ . 91.0%LLEITELTLNS ™,

e CoCa (Contrastive Captioners): Googleh B L 1=CoCald. ER BATODZEE TIELL,
EHRETFAMDRTZEZRAW T ILFE—HILEE (CLIPO &S57% Contrastive Learning& . H
BEX v T3 EBDGenerative LossD#AEHE)EEFRALTWS, 7710 Fa—=27 (2
&YImageNetTI.0%ZEER . Chld. MBRGEBRSBETILELSLVE RELEEFZHS
L7=E#EF )L (Foundation Model) A%, E— AR VIZEVWTHRBTHHIEEZRLTS ',

e DaViT (Dual Attention Vision Transformers): Z=f# 5 [\ (Spatial) &F+ )L 7 [ (Channel
) DAttentionZ N EEL TS S LT SHENEEZSO DO OREMIAVTFAMNRZASET
)L, DaViT-Giant($90.4%% 528k L T 5 ',

e ConvNeXtV2: MAEDEHIFE FiZ%ECNNMEFIZF7 L > P LT=FCMAE (Fully Convolutional
Masked Autoencoder) Z B 52 &E T, CNNR—RE A 588% B DFEEEEIR, CNNAKK &
LThyTTA47 CHENEHFDILEIHALTLDS .



ImageNet (Top-1) #ENDZEE : CNNA 5 Transformer, %
LTEBETILA

® CNN @ Transformer @ Hybrid

93 I
92 90%+ SOTA Zone

90 | 3 .-"
88 o.. S

86

84 |

Top-1 ¥ (%)

82 e

78 .

76
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% (Year)
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2020 DVITEZ LI, HEREHENBEIMLEL-Z EMRbM B, 2025-265 1£CoCatoDaViT4 & D KIREE FILH90%HE
DFEEHICFEL TS, —AHTConvNeXtV2AE ECNNB L&A ER L THE Y., MBRAGESEVE TEEF% (BCHMHY
FELGE) | OFEM B LTS,

Data sources: NVIDIA Blog (VOLO), HiringNet (2025 SOTA), HyperAl, ResearchGate

4.2 AR :DETRDEE LYOLOMD HEE

¥i{A#& H (Object Detection) [CEWTH/INTH A LI TRAEEE T, H D TILRegion Proposal
Network (RPN). Anchor Box, NMS (Non-Maximum Suppression) EW\of=F BjFZ T DEL—1 R
FAPRIAKRFEL TULVE=AY, TransformerR— X MDDETR (DEtection TRansformer) (&, ¥{A#& H
%Ity % BIRRE (Set Prediction Problem) 1&ELTERXIEL . End-to-End THEE A REICLT=,
DETRIZ. EI& N D ¥IARE 0B %Z 4% Self-Attention TETILIE T AT, EERHEZINHIL.
NMS%L CEfEELREERELE S,

2025 MCOCOT—4tyh)—4 —R—FTIE L TFTOZBIEARLND

e RF-DETR (Real-time Flow DETR): £ E MO DETRIZUNEHAEL . B/ IR TN EAR A
2o 1=H%. Roboflow”: & A BAFE L F-RF-DETRIZ. YOLOIZIL 4 B E L., T i L RIBFEE (



60.6 MAP) ZZE R, Transformer(Z kDU T ILAA LIEHENEELANILTERILESN T,

e YOLOV12: — AT, CNNR—ZXMDYOLO (You Only Look Once) #1bZ 1L & TULVEELY,
YOLOVI2IE., St EMED T IEI VT NARANDEED B ZIT IRARELTEERDOT
T7IRRBE —KTH S, H(ZYOLOVI2-N(Nano) D &S5HB/NETILTIL. CNNOT7—FTF
JFvihE M TransformerD A —/N—~yr%& L0516 . EENICERTHD,

5. EE 4 R D = 1p : Diffusion Transformer (DiT)

BAREPFICE T SHTransformer® BE# T, WA ZRETE B 3 X E(ITERE (Recognition) 1M 5T AL (
Generation) IND#EIER TH 5, 20244 1Z0penAlh F K L-EhiE 4 B AIMSoral (F, tHRICEHESE
5z -, FO#IDHE AT A Diffusion Transformer (DiT) TH 5.

5.1 U-NetHh 5Transformer~: A5 — 5 DEEH1ES

Stable Diffusion 1.x/2.x%%E D HEEDEBRE AL, /A XBRED/INYIR—2 YT —9ELT
CNNAR—ZDU-Net#{FEAL TL =, U-Netl&. Z oo Yo TYL G ET7vTH TG %1T51E58
TEEBDOBMMEEBERZSDIZIEIEBN TS, LHL., BIED K574 RE# - ZZHE R IZE
KEFERYS. BLGDSEFA VT4 (TFRL, B, B1E. 3D) A BIIZIKRSIZIE. CNNOD E E I8
EIFEHEERNTL ",

DiTl&. 2DU-NetZTransformerlZEE#Z -1 D TH S, Saining Xieb[CKH>TRESNT=CD
T—XTO0Fv(E  ULTOREZERED:

1. BEZHETOLE: SREEERETERE VL EM TR D TIEAL, VAE(Variational
Autoencoder) TIEMaSh =& £ ZE [ (Latent Space) TUEZEITS,

2. /%yF1t (Tokenization) : j&7E 3R IR (Latent Image) /Sy FIZHREIL, h—52 5 ELTHRS,
SHIZEY . BRY A XPT AR QT IS BRI S TE S,

3. R7—VUTHIDEEK: Transformer@ B XKD EBZTHAIET VYA RXET—EEEEOE
80T ([FE HREAE LT B (Scaling Law) JEVSH1E% . BRE RO HRITHLRAAT,
DITD /NS A—EHEE 0T LT, ERINBEEDFID (Fréchet Inception Distance) A7
MN—EBLTHELETEIEAETHEN TS,

5.2 B5Z2/\vF (Spacetime Patches) |[C&HMIEBL 2L — 3

Sora*>. Tencent®Hunyuan Video *' 2 E D RFFBEERET )L TlL. BEZEFROZAT HE
% (2D + Time) 1EL TTIEAL, I3BRT D BEZER) 12— L (Spacetime Volume) 1ELTHRS 7 TH—
FHERASA TS,

e Spacetime Patches: BET—42% 7L —LZEICMEBT LD TIEEL, BE#ESO-3XRT
T—RELTIRA., TNE/INSIILAFK (Cube) D/RXYFIZHREIT S, ChETBEZE/NF | L
A

o MIEER|DZEE: Transformerld. CNEDBEZE/N\YFRIDBEEREZEE T 5, CNITHEIC
TROTL—LDEFRZFATEHICEULDEREEFE D, R— LB ZLE-> TR S, K
NREND. ADRFTHEVS-BHRIE. FENAVFRORRBBZRELTETIVLIEEND,
SoraM MR 22 L —4 (World Simulator) JEFEIENBRTLLIEZZZIZ8H 5, Transformerl(d,



REDEET—34FETAHALET. HROHNWLEERIL—IL—F LHHEYE LB DM
— %  BEHEHYRE T ICE->TEBLTOWSAIEEMENREIATINS &,

FZ/Ny FE  BEEZ3IRTA) 2 —LE LTUET HEHEA

B f

-

&

BER) 2—L BNy F k=2 5 FSURT AN —

BE (£) F—FDTL—LELTTEEL, KiE#gh (T) ZEL3IRTOBEAKELTHERLONS, hE TREAYF] &
WS/hNERIARIHEIL., 75 v MEL TTransformer () 1ITAAT 5. Thick Y, ZERMGAERR & BREMNLGEL
ERFICFETE S,

6. FT-T0 BB E - Mambal g st EE D AT EEME

2024F M 52026 F AT T, TransformerD I EE |Z B NS AIREME D H A - T —FTIOF v
AEEITEEEEH TS, State Space Models (SSM). 4%(ZMambaT# 3 %,

6.1 Z REE#BVET E = D EE EMambad %

Transformer®Self-Attentionl. AAk—oo 3 NV (2xLT O(N2) DIEEEATR)EFRLEL
T 5, 224x224DEE (/N F$0196) L5 MRBE LAY AKEHE PR RO BE . S EOIDERE
& (CT/MRD) TIE, b—O 8B ~H+AIEL.GTEENERKT S,

Mambald., BT BLEA IR BEZERET ILIZ, A DKFEDE IR AH=X L (Selection Mechanism) #&
ALEETILTHB VAL r=Za—FIIL2ybT—2(RNN) D K5 (CTF—2E B RIZNIES B1=



. HREOATEEE—EThHY. 2EROHERR s oL tel (OWNV))<h
5, FNTWT, MiHZENAEETHDEL S TransformerD F mHF 3D,

6.2 Vision Mamba (Vim) D& #FHEFE %

2024F MBEIZFE R SN T=**Vision Mamba (Vim)**I%. E{&Z /Sy FHEL TR, FNENHME (
Forward & Backward) DSSMTHLIB G 57 —FTIVF v TH 5D, BHRIZIETFRD K575 BRFER
MERF 1A =8, MARMEBIZL>TEMMEMNBEERZIRADIIERATIN TS %,

o NE:VimlL, DeiT AZEMAVIT) LLLEL T, SR EEE (1248x1248) IZH L T28E & &
THY.GPUAEHEXB86.8%HIF TEAIENTRINTNS, ChlE. TYCTINA RS R
BESRIIZEVWTEGHEDRIETHDS %,

6.3 'MambaOut | F 2026 F D&

LAL. 2025F 2 RSN =/ X MambaOut: Do We Really Need Mamba for Vision? 1%, Z®
T—LIZAEEEAZIRMLE 2, ImageNetD K 5IBLE ML E RS iE’SlZO’Cl;t Mambal&ViT
PORFOCNNITH LT T LLEBAEERILEN>I-DTHD, BHXDAIICEINnE.
ImageNetH 38D &5 2R TIET REAK 4 (Long-range dependency)Jb‘E!ﬁiUEE’GliE
LT LACNNMIGBFTEMMRRELTEMNTH S, TDT=6H . Mamba®d K37 R EBREAERT 12581
ETILORENENESND,

2026 F DEFRTOHEMELTIE . MambaldVITEZIELICEZZ 513D TIEAL, TH5ET 5]
LOELTHREMTFONTNS,

VITOMEE: — AT B R, REEDOLE, £KET L (SoratiL),
Mamba®iE: BEREEER (BEEE. XAV E/ILREER) . RRENEMHEMN. 3DE
BEG. BRIT—F2EDIILFE—FINBLE, O—7 o RARMEBHTERL. Transformer
TIIFELENLNERY %,

e InceptionMamba: 20264 (Z(&. CNN(InceptionEL a—)L) DB M RE N &,
Mamba® KIBHIET) VT RENEFHAEDHLERNATUIRETILELEEL, EREERSET
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